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Abstract. A solution for two-body Green function relevant to the calculation of Auger 
spectra in the case of systems described by a multi-band Hubbard Hamiltonian with partially 
filled bands is presented. In order to obtain the correct atomic limit the formalism of atomic 
operators is employed. Equations of motion for double-time Green functions are solved 
using a two-step decoupling scheme. First, we restrict ourselves to contributions from 
hopping processes in two bands containing the two studied particles. Second, to cut the 
hierarchy of equations we replace the local number operators by their average values. The 
obtained solution has the character of an effective-medium theory for the scattering of a pair 
of particles. Interpolating between the band and atomic limit yields exact results. It is also 
correct in the limit of completely filled bands. As an example, the case of five degenerate 
bands is studied numerically. 

1. Introduction 

There is an increasing interest in applications of Auger electron spectroscopy to the study 
of solids (Fuggle 1981, Weightman 1982). A possibility that it could yield information on 
the band structure was realized quite early (Lander 1953), but real progress was made 
following the development of high-resolution Auger spectroscopy at the end of 1960s. 
CVV Auger spectra can provide useful information on electron-electron correlations, 
because they are influenced by the correlation energy between two holes in a final state. 

The correlation effects are particularly important in transition metals and their 
compounds. The Auger spectra of these materials are quite different from those of 
normal metals in that they are quasi-atomic (Antonides et a1 1977, Bennett et a1 1983, 
Gallon 1978, Madden et a1 1978, Parry-Jones et a1 1979). 

To account for this difference Hubbard-type Hamiltonians have been employed. In 
the case of one completely filled band, which is an exactly soluble case, it has been shown 
(Cini 1977, Sawatzky 1977, Sawatzky and Lenselink 1980), that atomic-like behaviour 
appears for a sufficiently large ratio U/W (where U is the Coulomb integral, W is 
the band width). A band-like behaviour of Auger spectra (i.e., Auger intensity is 
proportional to a self-convolution of the single-particle density of states) dominates for 
small values of U/W. Also some extension to the multi-band case was considered (Cini 
1978). This simple theory has been used to determine the value of an effective Coulomb 
interaction U,, (Antonides eta11977, Bennett etal1983, Parry-Jonesetall979, Sawatzky 
and Lenselink 1980). 
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However, for the partially filled d-bands typical of transition metals like Ni, CO, 
Fe and Pd the situation is more complex. Cini (1979) first applied the low-density 
approximation, but this fails to explain the Auger spectra of Ni. It has been argued by 
TrCglia et a1 (1980), that this approach is unsuitable for materials like Ni because they 
have relatively large hole concentrations. These authors have developed the per- 
turbation theory to second order in U/Wfor a degenerate Hubbard model applicable to 
any number of electrons in the d-band (TrCglia et a1 1981b). 

These two approaches have been compared in the case of a finite-cluster calculation 
(Cini and Verdozzi 1986, 1987) and in the case of one-dimensional chain (Ole4 et a1 
1986). Cini’s original theory was extended to a self-consistent version by Drchal and 
Kudrnovskg (1984), which can be applied to a broader range of electron concentrations. 

All these theories are limited either to low particle concentrations or to weak inter- 
actions. They have been used only in the case of single-band or degenerate multi- 
band models. Further development in two directions is desirable: (i) to develop an 
interpolating theory applicable to any hole concentration and to any strength of inter- 
actions, and (ii) to use non-degenerate multi-band Hamiltonians (Jennison 1978, Presilla 
and Sacchetti 1987). 

Recently Presilla and Sacchetti (1987) derived an RPA-like solution, which is the 
extension of the previous work of Sawatzky (1977) to the non-degenerate multi-band 
Hamiltonian. Except for the single-band case, however, it fails in an atomic limit 
(W = 0). For the single-band Hubbard Hamiltonian another interpolating solution has 
been obtained by Drchal(l989). In contrast with the RPA-like solution, it has the correct 
transformation properties under electron-hole transformation. 

In this work we derive a new solution for the multi-band Hubbard-type Hamiltonian, 
which interpolates between the band and atomic limit. We use the formalism of Hubbard 
atomic operators (Hubbard 1965) and the equation-of-motion method for double-time 
Zubarev Green functions (GF) (Zubarev 1960). 

2. Preliminaries 

In first-order perturbation theory the Auger rate is given by the Fermi golden rule. After 
some currently used approximations (neglecting the finite lifetime of the core hole, 
sudden approximation, neglecting interatomic processes and the k-dependence of matrix 
elements) the intensity of CVV Auger spectra can be expressed via a two-particle GF K 
in the following form: 

where o = E,  - Ek, Ek is an Auger electron energy, E, is an energy of the core hole, 
Mfic are matrix elements, ,d = ( p ,  a), i, = ( v ,  a’), ,6 = ( p ,  a”), f = (t, a”’), p ,  v ,  p ,  
t = 1, . . . , L label the bands ( L  is the number of bands), a’s are the spin indices with 
values +, -, and 

are Fourier components of the double-time GF (Zubarev 1960) and i, j are site indices. 
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To describe valence electrons in transition metals we consider the multi-band 
Hubbard-type Hamiltonian 

Since 

we can confine ourselves to the GFS (2) with band indices p = v ,  t = p or p = p, t = v 
and with two possibilities for spin indices a” = a’, a”’ = a and a” = U ,  a”’ = U ’ .  From 
(4) it follows that K~ou-ovo~-u = K~‘”-u~~ovo = 0. Then, because there holds 

= - K$”P ( p  # ?), it is sufficient to calculate only one set of GFS with indices 0, t :  
Kt’(o) = ((c$c$l Rf’))u ( 5 )  

(6) 

where we have denoted 
” ,  

RY” = cl;c,p 
and all the remaining GFS can be expressed through them, for example K~uvu’vu~u’  = 
(SuuJ - Spv)Kpuvu‘. In order to obtain the correct atomic limit (tl, = 0) we shall employ 
Hubbard’s atomic operators (Hubbard 1965), i.e., we express the operator c$c$ via the 
atomic operators X,. For Hamiltonian (3) we find the decomposition 

c$c$ = 2 X$@O Xt@g = c$c$Nt@g NtBC = nGh 
Afl, P + P > ,  

.f = n1p nl; = 1 - nlp  (7) 
where A,, is a multi-index derived from the 2L-component multi-index A = 
(al+, alp ,  . . . , aA+, aA-, . . . , aL+, aL-), ais{+,  -} by omitting aO and a,. Then for 
the GFS we have the relations 

K$’(o) = ( (X~W[RIF’) )~ .  
A@$ 

In the following we calculate GFs for atomic operators. 

3. Equations of motion 
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where 

4. Decoupling procedure 

Equations (8), (9) and (13) form the basic set of equations that will be used to determine 
the GFS K$’ (0). To obtain a closed set of equations we employ the decoupling procedure 
for higher-order GFS on the right-hand side of (9) and (13). 

First, for the three-site GFS in (9) (i # I because t,, = 0) we use the approximation 
(([XfP, C $ ] C z l b  IRf”) = 0 

(15) 
( ( c & [ X f ~ ,  C , ~ ] I R ~ ’ ) )  = - (Nflip)(6,,Kt: + 6,;K$;). 

Using this decoupling we restrict ourselves only to the hopping processes in the inves- 
tigated bands p ,  3.  This is similar to the derivation of the alloy analogy solution for one- 
particle GFS (Kotrla and Drchal 1987). However, the remaining relevant processes are 
treated here in a simplified approximation. 

Dividing now the approximated equation by o - EArv and substituting the result 
into (8) we find equations for K t f i  (U )  with the correct atomic limit 

q f ’ ( o ) K $ ’ ( ~ )  = ~ , , X ; ’ ( W )  - (tiK$: + tIK$:) (16) 
1 

where 

Second, to calculate the three-site GFS appearing in (16) we use the following 
decoupling in equations (13) 

((nkpc$c$ IRf’)) = (nkp)((c$c& IRf’)). (18) 
This has the character of an effective-medium approximation in the space of two-particle 
states. So we get the equation (i # I )  
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(19) 

5. Solution 

Asolution of a closed set of equations (16) and (19) can be found by expressing them in 
a matrix form in a linear space of the two-hole states spanned by a basis {lifllv^) = 
clpclGIvac.) IVi, I ,  f i ,  e ,  f i  # e}; Ivac.) is a ground state of the system. Then GFS K$,!(w) 
are elements of matrix operator K(w) acting in this space and equations (16) and (19) 
can be rewritten in the form 

( Q Q - P v +  W ) K = C .  (21) 

.$”U) = S2y - cp”(w) (22) 

Here Q and v are diagonal operators, 

and 

Pis  a projector 

and 

With the help of a resolvent g the solution of (21) is 

K = gC g = (an + w - Pv)-1. (26) 

If we define an unperturbed resolvent go and a T-matrix T 

(here P/A means the inverse in a subspace {P} and it holds that PTP = T) we get 

pg = [P/(1 - ~ 0 v ) l g o .  (28) 

This is sufficient for the determination of the elements Kiij. In the following we confine 
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ourselves to a homogeneous ground state (nip) = np and then we find the solution for the 
diagonal elements of GFS using a momentum representation in the form 

where 

g[’(k,  I ,  W )  = [ W ’ ( W )  + &“-/I) + &U( 4 ) I - l  

To complete the solution we have to know the correlation functions Xfw, qf’ and the 
correlation functions n k p .  The latter can be determined with the help of spectral relations 
(Zubarev 1960) from some approximate solution for one-particle GFS ((crg IC:) ) .  For the 
former we could either try to use some further approximation of the type 

(N+i) = n (n;o) (31) 
p+p,V^ 

which is valid for weak correlations and then again to employ only the one-particle GFs, 
or we could employ the higher-order GFS, like ( ( N ~ P c , ~  Ic,s1,)) (Kotrla and Drchall987) to 
determine the correlation functions needed. 

6. Limiting cases 

Here we first consider three limiting cases in which it is possible to obtain an exact 
solution for the GFS K .  

(a)  Band limit (P = UP” = B” = 0). The equations for K$f (including i = 1) are now 
closed and with the help of the momentum representation we get 

(b )  Atomic limit (ti, = 0). From (8) and (9) we have 

(c) Completely filled bands (c; ivac.) = 0) .  In this case the problem reduces to the 
two-particle problem (generalisation of the work of Sawatzky 1977) and the solution is 
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It can be easily seen that our solution (29) is correct in all these three limits. It also 

The fourth special case is that of the single-band Hamiltonian, i.e., the usual Hubbard 

(d) One band ( L  = 1). In this case the solution (29) is substantially simplified. The 

has the correct first moment in energy w.  

Hamiltonian. 

functions U and x do not depend on w and we obtain the solution (cf. Drchall989) 

1 nl,o +%,,-U - 1 1 
KE-"(w)= - 2 

N 2  k[ w + E( - I )  + E(I- k)  + I n  1 - I(n - l ) q o ( k ,  w )  
(35) 

1 
qo (k, w )  = - [ w + E( - p )  + E(p - k)  + In] -' n = (n i+ + ni- ). 

N P  

7. Case of degenerate bands 

The solution is much more simple for degenerate bands t$ = tu ,  Tg = T o ,  P = I, Up" = 
U ,  JP" = J, and we shall confine ourselves to the paramagnetic case np = ri = n/2L; n is 
the total number of electrons. We have three different possibilities for the GFS K:  ( a )  
,U = v , a' = -a; (6) ,U # v , a' = - a and ( c )  ,U # v ,  a' = a. The situation simplifies even 
further, if we put I = U ,  J = 0. Let us consider here as an example this particular choice. 
Then the three above cases are equivalent and the solution (29) takes the form 

where 

go@, I ,  w )  = [L? + E(-k)  + & ( - Z ) ] - l  

sz = w + 2z-0 + 2(2L - 1)riU 
(37) 

u(w) = L? - Q)(w). 

Here qo ( k ,  U) ,  n,, ~ ( k )  are the same quantities as in (30), but now they are identical for 
all values of ,d, 1;. The functions x(w)  and ~ ( w )  are given in terms of the two types of 
correlation functions Np and M p  in the following way 

where 

Ep = -2To - U(l + 2p) c; = (3. 
The correlation functions Np and M p  are 

N p  = ( n l .  . . n p ( l - n , + l ) .  . .  (1-~2~,--~)), p = O , .  . .  , 2 L - 2  (41) 

M p  = ( n l . .  . n p ( l - n p + l ) .  . . (1-n2L-1)) ,  (42) p = O , .  . . , 2 L - 1  

where a = 1, , . . ,2L in n, labels combined band and spin indices (,U, a) and all operators 
are taken at the same site. 
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To determine the Auger spectra from solution (36) we have overcome two difficulties. 
The first is technical in character. In the evaluation of formula (36) we have to carry out 
the 2d-dimensional integration in the momentum space (d is the dimension of the space). 
In order to reduce the amount of the computational work we introduce some additional 
approximations, namely a scaling-factor approximation, an interpolating approximation 
and the semi-elliptical one-particle DOS (Drchal 1989). 

The second complication is the determination of higher-order correlation functions 
M p ,  N p .  The fufictions M, can be calculated, for example, using the alloy analogy solution 
for one-particle GFS (Kotrla and Drchal 1987, Treglia et a1 1981a) in a self-consistent 
way, and the functions N, are then easily obtained with the help of relations 

N p  = M ,  + M p + l .  (43) 
This work is still in progress, but here we employ as a first step a cruder approximation 
for correlation functions. 

It turns out that the Hartree-Fock approximation (31) is inappropriate even for weak 
interactions, because it produces the unphysical zeros in the density of two-particle 
states. Instead, we start from the atomic limit, in which the correlation functions can be 
calculated exactly. 

In the atomic limit the Hamiltonian reduces to 

H = 2 k , ,  k j  = 2 Tonip + (U/2) E ' n ,  nit. 
1 P pc  

(44) 

k ,  describes an atom with energy levels 

e, = 4To + (U/2)q(q - 11, (45) 
where q = 0, . . . , 2L is the number of electrons in the corresponding eigenstate. The 
level e4 has a degeneracy ( y  ). Here, in our simple example, atomic terms d" and their 
corresponding energies have a simple form. However, a more realistic case can be 
described using the general Hamiltonian (3). Hence we could get a model for accounting 
of the quasi-atomic spectra using the atomic Hamiltonian. Here we take this limit as a 
starting point for the calculation of the correlation functions. 

The Auger process corresponds to the transition from the state with q + 2 electrons 
to the state with q electrons, with the change of energy 

e4 - = -2To - U(l + 2q) = E,. (46) 
However, not all these peaks appear in the spectra. In the atomic limit only four of them 
may have a non-zero probability. In addition to the functions M p ,  Np we define the 
functions Lp 

(47) 

(48) 

(49) 

L, = (nl  . . . n,(l - n p + l ) .  . . (1 - n z L ) )  p = 0 , .  . . ,2L. 

In the atomic limit there are only two non-zero Lp (cf. Treglia et a1 1981a) 

L," = ( P o  + 1 - .>/c;: 

M ,  = L, + Lp+l. 

Lpo+l = (n  - po>/c;:+1 

wherepo is the integer part of n. Then the M, are obtained using the relations 

Therefore, the Auger spectrum exhibits at most four peaks in the atomic limit. 
With this crude approximation for the correlation functions M p ,  Np and with the 

previously mentioned additional approximations we have calculated the spectra in the 
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,? '.'. . I Figure 1. Numerical illustration of the two-hole, i.e., 
0 \ , . . , I  Auger (full curves) and the two-electron (dotted 

- 4  - 2  0 2 4 curves) spectra for the occupation n = 5.0 and 
Shif ted energy different strengths of the interaction U. 

case of five bands ( L  = 5 ) .  They are plotted for selected values of the occupation number 
n and for increasing values of the interaction U in figures 1-3 against the shifted energy 
variable Q = U + 2(2L - 1)riU (To  = 0). The unperturbed band width is constant 
w= 2. 

The energy 2EF divides the two-hole and two-electron spectra (the small peaks which 
appear in the neighbourhood of the energy 2EFin figure 2 are an artifact of the additional 
approximations used in the numerical calculation). 

In figure 1, for the half-filled case (n  = 5 ) ,  the electron-hole symmetry of our solution 
is visible. With the increasing occupancy n ,  the number of the two-hole excitations 
increases and the number of the two-electron excitations decreases. 

Numerical results clearly demonstrate the change from the band-like behaviour to 
the quasi-atomic spectra, with the increasing strength of the interaction U .  For U = 0 
we have the self-convolution of one-particle density of states. The spectra for U = 1 are 
already quite similar to the Lorentzian broadened spectra calculated in the atomic limit. 
In addition to large atomic peaks, however, our solution also contains smaller peaks of 
band origin situated in the neighbourhood of energy 2EF. With increasing U outer and 
inner peaks develop. While the outer peaks have large shift in energy the inner ones 
have almost no shift. The transition to quasi-atomic behaviour is also evident for n = 5 ,  
in contrast with the single-band case, in which the Auger spectra for the half-filled case 
remain band-like even for large U. As expected in the multi-band case, quasi-atomic 
behaviour appears for substantially weaker interactions than in the single-band model. 
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Figure 2. As figure 1, but for n = 7.5. 

8. Conclusion 

I 0.1 ,A 
I 

0 
- 4  - 2  0 2 4 

Shifted energy 

Figure 3. As figure 1, but for n = 9.0 

Using the formalism of atomic operators and the method of decoupling for Zubarev GFS 
we have derived new solutions for GFS, relevant for the calculation of Auger spectra 
in the case of multi-band Hubbard Hamiltonian. It can be applied to arbitrary hole 
concentration and to any strength of interactions and also to the non-degenerate bands. 
Our solution is exact in the band limit, in the atomic limit, and also in the limit of 
completely filled bands. 

As an example we considered the special case of degenerate bands and, as an 
illustration, we calculated Auger spectra for a model with five bands using some 
additional approximations. The numerical results demonstrate the transition from band- 
like spectra to quasi-atomic spectra with the characteristic term structure. 

References 

Antonides E, Janse E C and Sawatzky G A 1977 Phys. Rev. B 15 1669 
Bennett P A ,  Fuggle J C and Hillebrecht F U 1983 Phys. Rev. B 27 2194 
Cini M 1977 Solid State Commun. 24 681 
- 1978 Phys. Rev. B 172788 
- 1979 Surf. Sci. 87 483 



Auger spectra of transition metals 4793 

Cini M and Verdozzi C 1986 Solid State Commun. 57 657 
_I 

Drchal V 1989 J .  Phys. Condens. Matter 1 4 7 7 5 8 2  
Drchal V and Kudrnovskq J 1984 J .  Phys. F: Met. Phys. 14 2443 
Fuggle J C 1981 Electron Spectroscopy: Theory, Techniques and Application vol4, ed. C R Brundle and A D 

Gallon T E 1978 Electron and Ion Spectroscopy of Solids ed. L Fiermans, J Vennik and W Dekeyser (New 

Hubbard J 1965 Proc. R .  Soc. A 285 542 
Jennison D R 1978 Phys. Rev. B 18 6996 
Kotrla M and Drchal V 1987 Phys. Status Solidi b 144 701 
Lander J J 1953 Phys. Rev. 91 1382 
Madden H H,  Zehner D M and Noonan J R 1978 Phys. Rev. B 17 3074 
OleS A M ,  Trtglia G, Spanjaard D and Jullien R 1986 Phys. Rev. B 34 5101 
Parry-Jones A C, Weightman P and Andrews P T 1979 J .  Phys. C: Solid State Phys. 12 1587 
Presilla C and Sacchetti F 1987 J .  Phys. F: Met. Phys. 17 779 
Sawatzky G A 1977 Phys. Rev. Lett. 39 504 
Sawatzky G A and Lenselink A 1980 Phys. Rev. B 21 1790 
Trtglia G,  Ducastelle F and Spanjaard D 1980 Phys. Rev. B 21 3729 
Trkglia G ,  Ducastelle F and Spanjaard D 1981a Solid State Commun. 39 1113 
Trtglia G ,  Desjonqueres M C, Ducastelle F and Spanjaard D 1981b J .  Phys. C: Solid State Phys. 14 4377 
Weightman D 1982 Rep. Prog. Phys. 45 753 
Zubarev D N 1960 Sou. Phys.-lisp. 3 320 

1987 Nuovo Cimento D 9 1 

Baker (New York: Academic Press) pp 85-152 

York: Plenum) pp 230-72 


